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The analysis of the instabilities of convection rolls in a fluid layer heated from below 
with no-slip boundaries exhibits a close competition between various oscillatory 
modes in the range 2 6 P 5 12 of the Prandtl number P. In addition to the 
even-oscillatory instability known from earlier work two new instabilities have been 
found, each of which is responsible for a small section of the stability boundary of 
steady rolls. The most interesting property of the new instabilities is their close 
relationship to the hot-blob oscillations known from experimental studies of con- 
vection. In  the lower half of the Prandtl-number range considered the BOB-mode 
dominates, which is characterized by two blobs each of slightly hotter and colder fluid 
circulating around in the convection roll in a spatially and time-periodic fashion. At 
higher Prandtl numbers the BEl-mode dominates, which possesses one hot blob (and 
one cold blob) circulating with the convection velocity. Just outside the stability 
boundary there exist other growing modes exhibiting three or.four blobs which may 
be observable in experiments. 

1. Introduction 
The onset of oscillations in convection flows has received much attention in the 

literature since it is often viewed as a major step in the evolution of turbulence in 
fluid layers heated from below. Oscillations do indeed precede the transition to chaos 
in small convection boxes (Gollub & Benson 1980) or when the convection rolls are 
constrained by a magnetic field (Fauve, Laroche & Libchaber 1981). In large- 
aspect-ratio layers, on the other hand, a direct transition to aperiodic motions takes 
place, which appears to be induced by the skewed-varicose instability (Ahlers & 
Behringer 1978; Gollub & Steinman 1981). Even in the latter case the onset of 
oscillations can be noticed at higher Rayleigh numbers in the form of peaks above 
a broad frequency spectrum. 

Much of the experimental work in recent years has focused on fluids with Prandtl 
numbers P i n  the range 2 ;S P 6 7 in order to demonstrate the interesting phenomena 
associated with low-Prandtl-number fluids. Liquid metals, liquid helium and gases 
have lower Prandtl numbers, but do not easily offer the opportunities for visualization 
of fluid motions that are available for transparent liquids such as water. Water is a 
particularly suitable liquid since its Prandtl number changes from a value of about 
7 at room temperature to a value of less than 2 near its boiling point. The increasing 
number of experiments carried out in this intermediate range of Prandtl nimbers has 
motivated the authors of this paper to extend the earlier work on the instabilities 
of convectio:l rolls to this domain of the parameter space. In the papers by Clever 
& Busse (1974) and Busse & Clever (1979) the attention has been focused on the cases 
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P = 7 and P =0.71 and the belief was expressed that only quantitative changes of 
the stability boundaries are to be expected between these two Prandtl numbers. The 
computations turned out to be especially costly in that range of Prandtl numbers 
and the stability boundaries were calculated only for a few discrete values of the 
wavenumber a of the convection rolls, as a function of the Prandtl number, 
throughout this regime. The new computations reported in this paper confirm the 
expectations based on the older work for the major part of the stability boundary 
of convection rolls in the (R, a)-space. The picture is changed, however, at  the 
high-Rayleigh-number portion of the stability boundaries because of the appearance 
of new modes of oscillatory instability. These modes are characterized by the 
circulation of blobs of fluids which are hotter or colder than the time average at the 
respective position of the fluid layer. Oscillations of this kind have long been known 
from experimental observations of convection (Krishnamurti 1970; Busse & 
Whitehead 1974), even though they are usually not observed as instabilities of rolls. 
As in the case of other mechanisms of instabilities, the oscillatory blob instabilities 
are relatively little modified when they are preceded by another transition from rolls 
to three-dimensional forms of convection. The theoretical analysis presented in this 
paper thus has a more general range of application than is evident from the 
mathematical formulation. 

The analysis starts in $2 with a brief outline of the mathematical methods. For 
a detailed description of the equations the reader is referred to earlier work, where 
the same methods have been used. In $3 an overview of the instabilities is given 
and a classification baaed on their symmetry properties is outlined. The stability 
boundaries for the Prandtl numbers 2.5 and 4.0, are described in $4 and the two-blob 
instability is discussed in some detail. The stability boundaries at  higher Prandtl 
number are discussed in $5,  where the one-blob instability is also described. In  order 
to complete the description of the stability boundaries in the parameter space, 
cross-sections are presented for given values of the Rayleigh number R and of the 
wavenumber a in $6. The paper closes with a general discussion of the results in 
relationship to experimental observations and other theoretical work. 

2. Outline of the mathematical methods 
We consider a horizontal fluid layer heated from below with upper and lower rigid 

boundaries which are kept at the temperatures Tl and T, respectively. The 
dimensionless Navier-Stokes equations in the Overbeck-Boussinesq approximation 
and the heat equation are given by equations (l), (2) and (3) of Clever & Busse (IS%), 
hereinafter referred to as I. The height d of the layer, d 2 / K  and (T2-Tl)/R are used 
aa scales for length, time and temperature respectively, where K denotes the thermal 
diffusivity and R is the Rayleigh number. The velocity field u is described in terms 
of a general representation for a solenoidal vector field 

u = v x (V x @)+V x A$, 

where 1 is the vertical unit vector. By taking the vertical components of the curl and 
the curl (curl) of the equation of motion two equations for the functions + and q5 are 
obtained. The third equation of the problem is the heat equation for the deviation 
6 of the temperature from its static distribution. These equations are given by (5 ) ,  
(6), and (7) of I and must be solved subject to the boundary conditions 

$ =-$ = ~ = 8 =  0 a t z  = ki, (2.1) 
a 
a2 
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where a Cartesian system of coordinates has been used with the z-coordinate in the 
vertical direction. 

The analysis proceeds in two steps. First, two-dimensional steady nonlinear 
solutions are obtained which describe the convection rolls observed in experiments. 
In the second step infinitesimal disturbances of arbitrary three-dimensional form are 
superimposed onto the steady solution. If a growing disturbance is found, the roll 
solution is unstable ; if no growing infinitesimal disturbance exists, the steady solution 
is regarded as stable. Since steady roll solutions exist as a function of R, P and a ,  
a complete stability analysis requires the investigation of a three-dimensional 
parameter space of steady solutions. Fortunately, since the stability properties 
depend sufficiently smoothly on the parameters in general, costly detailed computa- 
tions are required only in special cases. 

The steady solution is obtained by a Galerkin technique. Since $ vanishes for the 
two-dimensional case, only q5 and 6 have to be expanded in terms of orthogonal 
functions satisfying the respective boundary conditions, 

Explicit expressions for gv(z)  and f v ( z )  are given in I. The summation runs through 
all integers 1 < v  < N ,  - N +  u < h < N-v, where the truncation parameter N is 
chosen such that the solution changes by a negligible amount when N is replaced by 
N + 2 .  The basic equations admit a subset of solutions of the form (2.2) which is 
characterized by the symmetry with respect to y = 0 and by the following symmetry 
with respect to the axis of the convection roll: 

The symmetry in y implies that all coefficients aAv, bAv are real with a-Av = aAv, 
b-Av = bA,, while condition (2.3) requires that all coefficients with odd h+v vanish. 
Since only convection rolls described by this subset of solutions have been observed, 
solutions outside the subset will not be considered. 

As in I we use the following general description for the three-dimensional 
infinitesimal disturbances : 

Substitution of (2.4) in the stability equations leads to a system of linear homogeneous 
equations for the coefficients (z,,, SAV, 9, with cr as the eigenvalue. The eigenvalue cr 
with the maximum real part nrmax is determined as a function of b and d .  This 
computation is repeated for several values of R and a, which are chosen such that 
they straddle the line in the (R, a)-plane on which B,,,, vanishes. If the values of 
R and a at which urmax has been calculated are sufficiently close, the stability 
boundary crrmax = 0 can be determined by interpolation. This method has been 
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successfully employed in I and in several other papers. The inaccuracies introduced 
by the interpolation are usually negligible in comparison with those caused by a finite 
value of the truncation parameter N .  

3. Instabilities of convection rolls 
The relatively high symmetry of the steady roll solution permits the separation 

of disturbances of the form (2.4) into several subsets. Because of the symmetry (2.3) 
the solutions of the stability equations have vanishing coefficients GAY, 6,, either for 
odd or for even h + Y. In  table 1 these cases correspond to odd and even reflection or 
R-symmetry respectively. The coefficients ZAU in the expansion of J always possess 
a parity opposite to that of GAv and 6A,,. For d = 0, a further subdivision is possible 
in that both classes of disturbances defined so far separate into those disturbances 
8, 8 that are symmetric functions of y and those that are antisymmetric in y. In 
table 1 the respective instabilities are described by S and A .  The instabilities which 
correspond to finite values of d are denoted by D .  The symmetry of the function J 
is, of course, opposite again to that of 6 and 8. 

In table 1 all instabilities are listed that have been found in the case of convection 
rolls with rigid top and bottom boundaries. The two new blob instabilities described 
in this paper have been included. Sometimes two different names are used when the 
instability corresponds to a long section of the stability boundary in the (R, a)-plane 
and when its properties vary accordingly. But usually the different instabilities are 
well defined and well separated in the space of their parameters. 

The cross-roll and zigzag instabilities have already been mentioned by Schluter, 
Lortz & Busse (1965). They have been studied in more detail by Busse (1967, 1971) 
and observed experimentally by Busse & Whitehead (1971). The Eckhaus instability 
(Busse 1971) represents a purely two-dimensional mechanism restricting the range 
of stable wavenumbers a to around the critical value a,. The even-oscillatory 
instability was observed experimentally by Willis & Deardorff (1970) and has been 
described theoretically by Busse (1972). First computations in the presence of rigid 
boundaries have been reported in I. The skewed-varicose instability has been 
discussed both from the theoretical and experimental point of view by Busse & Clever 
(1979). Additional data can be found in Clever & Busse (1978). 

In  this paper further information will be provided for all instabilities mentioned 
above; but attention will be focused on two new oscillatory instabilities, B02 and 
BE1, which feature circulating blobs of fluid with a temperature deviating from the 
equilibrium value. Even though only a small fraction of the stability boundary 
corresponds to these instabilities, the mechanism appears to be realized in a large part 
of the parameter space of convection at  high Rayleigh numbers. 

4. Stability Boundaries at P = 2.5 and P = 4.0 
Since laboratory convection experiments are usually done a t  a nearly constant 

Prandtl number, plots of the stabilit'y boundaries for a given value of P provide the 
most useful information about the results of the stability analysis. In recent years 
the range 2 5 P 5 5 has become of considerable interest because experiments on 
convection in hot water fall within this range. In  figure 1 the stability boundaries 
are displayed for P = 2.5, which corresponds to a water temperature of about 70 "C. 
Comparison of figure 1 with the stability boundaries for P = 0.71 shown in I indicates 
that the region of stable rolls is extended greatly towards higher Rayleigh numbers 
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Cross-roll S 
Knot S 
B02 S 
BE 1 S 
Zigzag A 
E-oscillatory A 
Eckhaus D 
Skewed-varicose D 

Instability symmetry 
R- 

symmetry 

odd 
odd 
odd 
even 
even 
even 
even 
even 

Idm I 
0 
0 
0 
0 
0 
0 

$ 1  
6 1  

Ibml 

2 a, 
5 a, 
x 3.1 
x 4  
> O  
x 2  
0 

6 1  

P-range a-range 

1.1 5 P 2 a, 
1.1 5 P S  10 ka, 

2 5 P 5 8  <a, 
1 5 P 5 1 2  <a, 
2 S P  < 0, 
P 5 2.5 5 a, 
P 5  1 5 a, 
P 5 30 5 a, 

TABLE 1. Instabilities of convection rolls in the presence of rigid boundaries. 2x/Q* corresponds 
to the circulation period in the convection roll 

10 

R x lo-' 

\ 
\ 
\ 
\ 
\ 

0 1 2 3 4 
a 

FIQURE 1. Stability boundaries of convection rolls for P = 2.5 as a function of the Rayleigh number 
R and the wavenumber a. The boundaries correspond to the cross-roll (CR), knot (KN), skewed- 
varicose (SV), Eckhaus (EC), zigzag (ZZ), even oscillatory (EO) and B02 instabilities. The dashed 
line indicates the Rayleigh number for onset of convection. 

and slightly towards lower wavenumbers but is otherwise changed relatively little 
in its shape. The main exception is the replacement of the even oscillatory instability 
by a new oscillatory instability which is denoted by B02 in table 1. This replacement 
happens relatively quickly as a function of Prandtl number. It starts at about P = 2.2 
and has just been completed at P = 2.5, as can be seen from the information contained 
in figures 1 and 6. 

Figure 2 shows that the two-blob instability B02 is characterized by two fluid 
parcels slightly hotter and two fluid parcels slightly colder than the long-time 
average, circulating around in the convection roll. During the vertical movement the 
blobs of neighbouring rolls join. Once they have arrived at the opposite boundary 
they separate again. During the horizontal motion the upper and lower blobs remain 
quite distinct because they move in opposite directions and less time is available for 
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FIQURE 2. The disturbance of temperature field of the B02 instability in the plane x = 0 for a 
sequence of phws ,  nit = 0, trr, @, fn. Positive and negative values of 6(y, z) correspond to solid 
and dashed lines respectively. 

the diffusive coalescence of their temperature fields. The blobs are limited in their 
transverse scale along the roll axis. The value of the wavenumber b at which the 
growth rate reaches a maximum is around 3.5, according to figure 3. In this figure 
real and imaginary parts of u are drawn for both the even oscillatory instability and 
the two-blob instability B02. The period 2x/ui of the two-blob instability corresponds 
to one half of the circulation time in a convection roll and thus decreases as the 
Rayleigh number increases but is nearly independent of b. The period of the 
even-oscillatory instability also scales with the circulation time but exhibits a strong 
dependence on b. In fact, the oscillatory instability ceases to exist for small values 
of b.  As shown in figure 3, the two complex-conjugate eigenvalues u approach the 
real axis around b = 0.45 and separate into two real eigenvalues, one becoming the 
eigenvalue u = 0 at b -- 0, which corresponds to a translation of the roll pattern in 
the 2-direction. This behaviour is different from that of the even-oscillatory instability 
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FIGURE 3. The real (solid lines) and imaginary (dashed lines) parts of the growth rate u for the 
even oscillatory (P = 2.5, a = 1.2, P = 19000) and for the B02 (R = 18000 and 20000, P = 2.5, 
a = I .25) instabilities. 

in the case of stress-free boundaries, in which case the instability occurs in the limit 
of small values of b ( B u m  1972). For this reason the vanishing of the imaginary part 
ai at a small, but finite, value of b was overlooked in I, where a coarser grid of b- 
values had been used. An impression of the horizontal time-dependent pattern intro- 
duced by the two-blob B02 instability can be gained from fi 4. In contrast to 
figure 2, which shows only the disturbance temperature field E e  total isotherms, 
8 + €8 = constant, have been plotted in figure 4. The small-value 8 is arbitrarily chosen 
in order to indicate the deviations from the two-dimensional steady isotherms 
introduced by the instability. As can be seen from figures 2 and 4, the blob features 
of the instability are most pronounced near the boundaries, in particular near the 
stagnation points where the upward and downward flows meet the cold and hot 
boundaries respectively. This property indicates that the thermal signature of the 
instability is roughly proportional to the gradient of the temperature field of the 
convection rolls. A periodic thinning and thickening of the thermal boundary layers 
associated with an acceleration and deceleration of the up- and down-moving flow 
appears to be the basic ingredient of the instability. This property is also suggested 
by the dominance of the CfIt  coefficients of the disturbance eigenvector. 

Relatively little change is exhibited by the stability boundaries when the Prandtl 
number is changed from 2.5 to 4.0. Only a small part of the stability region is shown 
in figure 5, where the results for the two Prandtl numbers are compared. The 
even-oscillatory instability is strongly affected by the increase of the Prandtl 
number and so has not been included in the figure for P = 4.0. On the other hand, 
a third oscillatory instability becomes noticeable, the one-blob instability BE1, which 
eventually replaces the two-blob instability as the Prandtl number is further 
increased. The truncation parameter N = 8 has been used for most of the computa- 
tions reported in this paper. In  figure 5 results are also shown for N = 10 in the case 
P = 4.0. The difference between the two curves provides a measure for the uncertainty 
of the stability boundary. 

I6 FLM 164 
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FIGURE 4. The isotherms in the midplane z = 0 of the B02 instability superimposed onto the 
steady-roll solution. The disturbance eigenvector has been normalized such that Z,, = 0.4. The four 
graphs show the isotherms at  the times a, t = 0, in, IE, in. 
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FIGURE 5. Stability boundaries of convection rolls a t  the high Rayleigh numbers fur P = 2.5 (solid 
lines) and P = 4.0 (dashed lines). The long-dashed curve corresponds to the onset of the even 
oscillatory instability. The dotted lines indicate the stability boundaries for P = 4.0 corresponding 
to the truncation parameter N = 10 instead of N = 8. 
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FIQURE 6. Upper part of the stability boundaries of rolls for P = 10. The dashed lines 
correspond to growth rates u = 1. The notation is the same as in figure 1. 

5. Stability boundaries for P greater than 7 
Because the stability boundary corresponding to the onset of the cross-roll 

instability moves towards larger values of a with increasing Prandtl number, the 
length of the boundary of the domain of the stable rolls corresponding to the onset 
of the B02 instability decreases. At P = 7 only a tiny triangle at the top of the 
stability domain is cut off by this instability. Except for this tiny triangle the stability 
region for P = 7 shown in I is unchanged. The Prandtl number 7 also marks the first 
time a t  which with increasing P the onset of the one-blob instability BE1 becomes 
part of the stability boundary. In  particular the stability boundaries of the two 
oscillating blob instabilities, BE1 and B02, cross at a small angle at about a = 2.0, 
R = 26 x loa for P = 7. Because the upper intersection between cross-roll- and 
knot-instability boundaries moves towards higher Rayleigh numbers for P 2 7, the 
section of the stability boundary corresponding to the onset of the BE1 instability 
increases when the Prandtl number is increased beyond P = 7. Figure 6 shows the 
section of the stability region of interest for P = 10. This figure also includes lines 
at  which the maximum growth rates of the instabilities reach 1.0 in dimensionless 
units. These lines thus give an indication of the strength of growth of the respective 
instabilities once the stability boundaries have been passed. 

Figure 7 gives an impression of the spatial structure and time dependence of the 
BE1 instability. Except for the basic difference that only one hot and one cold blob 
are circulating, the instability closely resembles the B02 instability. The imaginary 
part CT~ of the growth rate is again independent of b and is approximately half as large 
as the corresponding value of the B02 instability. The values of b maximizing the 
growth rate lie in the neighbourhood of 4.5 in the region where the instability forms 
the stability boundary. They tend to increase with Prandtl number. Figure 8 gives 
an impression of the horizontal structure by indicating the isotherms of the combined 
roll-plus-disturbance solution, 8+ e#, where a suitable value of e has been chosen. The 
main difference that can be seen in the comparison with figures 2 and 4 is the pre- 
servation of the symmetry of the basic rolls in the (y, 2)-plane by the BE1 instability. 

The BE1 instability resembles closely the oscillatory instability found by Kessler, 
Dallman & Oertel(l984) in independent computations of convection in a horizontal 

16-2 
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FIGURE 7. The disturbance temperature field in the plane x = 0 for different phases of the BE1 
instability. Positive and negative values of #(y, z )  correspond to solid and dashed lines respectively. 
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FIQURE 8. The isotherms in the midplane z = 0 of the BE1 instability superimposed on the steady-roll 
solution. The disturbance eigenvector has been normalized such that do, = 0.3. The four graphs show 
the isotherms at the times cr, t = 0, i x ,  x ,  3. 

50 t 

\ sv -Y, 

2.5 3.0 3.5 4.0 
a 

FIGURE 9. Stability boundaries of rolls for P = 16 (solid) and P = 
(dashed). Notation is the same as in earlier figures. 

25 

box of fhite size for P = 7. A t  the high Rayleigh numbers, of order 7 x lo4, used 
by these authors the transition to a bimodal pattern of convection must be expected 
to have occurred. But this transition could not be realized in the computations 
because of the limited numerical resolution in the direction parallel to the roll axis. 

Although the BE1 instability is nearly independent of the Rayleigh number for 
P 2 3, it does not correspond to a part of the boundary of the domain of stable rolls 
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F’IGURE 10. Cross-section of the domain of stable rolls in the (R,  P, a)-space for constant a = 1.45. 
Notation is the same as in figure 1. The numbers at the curves refer to the maximizing values bm. 

for P 2 12 because the cross-roll stability boundary moves towards somewhat 
lower Rayleigh number as P increases. That the onset of BE1 instability becomes 
independent of P has been checked by computations for P = lo3. Using a wave- 
number a = 3.0 we find that the onset of the BE1 instability drops from R = 42 x lo3 
to R = 38 x lo3 when P is changed from 25 to lo3. The imaginary part ui changes 
from 136 to 128 and the maximizing value of b stays at about the same value of 5.2. 

Figure 9 shows the stability boundaries for both P =  16 and 25. The stability 
boundary for the knot instability has merged with that of the cross-roll boundary 
as will be discussed in more detail in the next section. The skewed-varicose instability 
is still important at P = 25 but by extrapolation of the results shown in the figure 
it can be concluded that this instability will be preceded for all a by the cross-roll 
instability when P exceeds 30. Thus the region of stable rolls rapidly approaches the 
shape obtained for infinite Prandtl number (Busse 1967) and there seems to be no 
need to calculate stability boundaries for the range 25 < P < 100. 

6. Prandtl-number dependence of stability boundaries 
Although stability boundaries of convection rolls have been discussed in the 

preceding sections at fairly closely spaced values of P, it is illuminating to see more 
directly the dependence of the instabilities on the Prandtl number. Figure 10 
describes a cross-section of the stability surfaces at  a constant value of a in the 
(R, P, a)-parameter space of steady-roll solutions. This cross-section indicates that 
rolls with low values of a are stable only for a limited range of Prandtl number. The 
lowest possible value of a for a stable roll has not been calculated; i t  probably lies 
close to 1.1.  Figure 10 shows clearly the strong Prandtl-number dependence of the 
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R = 25 x 108. Notation is the same aa in figure 1. 
Cross-section of the domain of stable rolls in the (R ,  P ,  &)-space for constant 

even oscillatory instability and the much weaker dependence on P of the blob 
instabilities. A number of additional blob instabilities have been followed in the 
computations leading to this paper; but, since they were always preceded by other 
instabilities, they are not described here in detail. A B04 and a BE3 instability have 
been found at Rayleigh numbers slightly above those required for the B02 or the 
BE1 instability. As is suggested by the nomenclature, the BE3 instability differs from 
the BE1 instability essentially only in that three hot and three cold blobs circulate 
in a convection roll instead of one hot and one cold blob. This property is also evident 
in the frequencies ai associated with the instabilities. The value of ai for the BE3 
instability agrees to within a few percent with three times the value of ai for the BE1 
instability. 

A different cross-section of the stability surfaces in the (R, P, a)-space is shown in 
figure 11. At the relatively high value of R = 25 x los a region of stable rolls exists 
only for 6.3 5 P 5 103. Several instabilities are involved in bounding the stability 
region and the structure of interacting surfaces becomes quite complex in the lower 
left corner of the figure. Of particular interest is the junction of the cross-roll and 
knot instabilities which occurs near the top of figure 11.  These two instabilities are 
unusual in that they do not differ in their symmetry properties. They even correspond 
to the same eigenvalue a(b )  as a function of the wavenumber b along the axis of the 
roll solution. Their main distinction is the value b,  of b maximizing the growth rate 
a,. As shown in figure 12 as a typical example for the region P 5 10, the growth 
rate a displays a typical double-humped structure as a function of b. The hump 
corresponding to b, < a, belongs to the knot instability while the cross-roll instability 
exhibits a maximizing value b,  above a,. The two peaks of a reach equal values at 
the crossing point of the two stability boundaries. But the double-hump feature is 
noticeable over a large region of the parameter space for P 5 10. That the two 
instabilities are quite distinct for P 5 10 while they lose their distinction for higher 
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FIGURE 12. Growth rates u, as a function of b for the knot and cross-roll instabilities and the B02 
instability for the indicated values of the Rayleigh number R at P = 7 and a = 1.95. 
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FIGURE 13. The value b, of the wavenumber b which maximizes the growth rate at the stability 
boundary for the knot instability (b, < a,) and for the cross-roll instability (b, > a,). Numbers 
refer to the Prandtl numbers. 

Prandtl numbers can be seen in figure 13, which depicts the maximizing values of b,  
along both stability boundaries for different values of P. The separation of the two 
humps which characterizes the growth rate as a function of b in the neighbourhood 
of the crossing of the stability boundaries increases with decreasing P for P 5 10. 
For P 2 16, however, only a single maximum of cr occurs as a function of b. Between 
the Prandtl numbers 10 and 16 the knot-instability peak merges within the shoulder 
of the cross-roll-instability peak. It thus seems reasonable to associate the entire 
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FIGURE 14. The growth rate u of the cross-roll instability as a function of b for R = 25 x lo', P = 25, 
and different values of a aa indicated in the figure. The dwhed line connects the maximizing values 
bm. 

stability boundary with the cross-roll instability for P 2 16, but to introduce the 
name knot instability for the instability responsible for the right branch of the 
stability boundary in (R, a)-diagram when P is of the order 10 or less. 

As shown in figure 14, the growth rate B of the cross-roll instability exhibits 
basically the same dependence on the parameter for P 2 16 as in the case of infinite 
Prandtl number ( B u m  1967). In  particular, there exists a certain a, between 3.3 and 
3.4, where the maximum growth rate reaches a minimum for a given value of R. 

7. Discussion 
The new mechanisms of oscillatory blob instability discussed in this paper have 

not much changed the general shape of the stability domain of steady rolls in the 
(R, P, a)-space as it had emerged from the earlier less detailed computations (see, for 
example, figure 13 of Busse 1978). The new instability mechanisms are important, 
however, because like most of the other mechanisms of instability they continue to 
operate after the two-dimensiond structure of steady rolls has been changed into a 
three-dimensional form of convection. Because of their different symmetry properties, 
the different mechanisms of instability interfere relatively little with each other in 
general. The one-blob- and two-blob-type oscillations are usually observed after the 
convection flow has become three-dimensional, primarily through the transition to 
bimodal convection. But measured dependences on the parameters R and P of the 
frequencies of oscillations closely resemble those extrapolated from the results 
described in this paper. The doubling of the frequency corresponding to the transition 
from one-blob to two-blob oscillations has been noticed by Rossby (1966) and Willis 
k DeardorfT (1967), but the nature of these oscillations was first elucidated by 
Krishnamurti (1970). Because liquids with P 2 10 were mostly used in the experiments 
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the one-blob oscillations are predominantly seen. Another reason for the preference 
of the BE1 mechanism could be the high value of b,,,, which makes this mechanism 
more compatible with the bimodal pattern of convection. An example of relatively 
pure one-blob oscillation can be seen in figure 9 of Busse & Whitehead (1974). A t  larger 
secondary wavelength of the bimodal cell or at lower Prandtl numbers the oscillations 
combine features of the even oscillatory and the one-blob instabilities as seen in their 
figures 6, 7 and 8. 

Oscillations with numerous frequencies have also been observed in the convection 
experiments of Walden et al. (1984) and Kolodner et al. (1985). Because of the 
relatively small aspect ratio of their convection layer, the convection pattern is 
strongly influenced by the sidewalls and some frequencies correspond to oscillations 
in different parts of the convection layer. While it is thus not possible to find a clear 
relationship between the frequencies and the number of blobs circulating in the 
respective convection cell, the experiments provide very accurate measurements of 
the frequency spectrum and confirm the general picture that has emerged from the 
earlier experiments. 

The observations of instabilities of convection rolls are not only affected by the 
degree to which the two-dimensional roll structure is realized in the experiment but 
also by the growth rates of the instabilities. The stability boundary extrapolated from 
laboratory observations may differ from the theoretical one because only instabilities 
with sufficiently high growth rates are seen in experiments. Among instabilities with 
neighbouring stability boundaries the instability with the strongest growth rate is 
thus most likely to be seen in the experiment and not necessarily the instability which 
actually bounds the domain of stable rolls. So far no significant discrepancy between 
theory and experimental observations has been reported. This suggests that subcritical 
finite-amplitude onset of instabilities does not occur. There is also no experimental 
indication for the onset of the oscillatory skewed-varicose instability in the presence 
of rigid boundaries. This instability seems to occur only in the presence of stress-free 
boundaries (Busse & Bolton 1984; Bolton & Busse 1985). A search for such an 
instability has been conducted for low values of P in the course of the present 
investigation. Although a local maximum of the real part of u with associated finite 
imaginary part ui was found for values of d and b in the neighbourhood of 0.5, this 
maximum of u, always remained negative within the domain of stable rolls. 

An interesting question which has not been answered by the analysis of this paper 
is the effect of the new instabilities on the convective heat transport. Krishnamurti’s 
(1970) observations suggest an increase of the heat transport due to the oscillations. 
Since changes in the pattern of convection often occur concurrently with the onset 
of oscillations, it is not always clear how much oscillations contribute to the heat 
transport. A theoretical analysis based on a perturbation approach for small 
amplitudes of oscillations could eventually elucidate this problem. But such an 
extension of the present calculations goes beyond the scope of this paper. 
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